Schwarz lemma from a Kähler manifold into a complex Finsler manifold
نویسندگان
چکیده
Suppose that M is a complete Kähler manifold such its holomorphic sectional curvature bounded from below by constant and radial also below. N strongly pseudoconvex complex Finsler above negative constant. In this paper, we establish Schwarz lemma for mappings f into N. As applications, obtain Liouville type rigidity result N, as well theorem bimeromorphic compact manifold.
منابع مشابه
Geodesics on the Indicatrix of a Complex Finsler Manifold
In this note the geometry of the indicatrix (I, L̃) is studied as a hypersurface of a complex Finsler space (M,L). The induced Chern-Finsler and Berwald connections are defined and studied. The induced Berwald connection coincides with the intrinsic Berwald connection of the indicatrix bundle. We considered a special projection of a geodesic curve on a complex Finsler space (M,L), called the ind...
متن کاملStrongly homotopy algebras of a Kähler manifold
It is shown that any compact Kähler manifold M gives canonically rise to two strongly homotopy algebras, the first one being associated with the Hodge theory of the de Rham complex and the second one with the Hodge theory of the Dolbeault complex. In these algebras the product of two harmonic differential forms is again harmonic. If M happens to be a Calabi-Yau manifold, there exists a third st...
متن کاملApplication of Hopf's lemma on contact CR-warped product submanifolds of a nearly Kenmotsu manifold
In this paper we consider contact CR-warped product submanifolds of the type $M = N_Ttimes_f N_perp$, of a nearly Kenmotsu generalized Sasakian space form $bar M(f_1, f_2, f_3)$ and by use of Hopf's Lemma we show that $M$ is simply contact CR-product under certain condition. Finally, we establish a sharp inequality for squared norm of the second fundamental form and equality case is dis...
متن کاملGROUPOID ASSOCIATED TO A SMOOTH MANIFOLD
In this paper, we introduce the structure of a groupoid associated to a vector field on a smooth manifold. We show that in the case of the $1$-dimensional manifolds, our groupoid has a smooth structure such that makes it into a Lie groupoid. Using this approach, we associated to every vector field an equivalence relation on the Lie algebra of all vector fields on the smooth...
متن کاملOn the Vertical Bundle of a Pseudo-finsler Manifold
We define the Liouville distribution on the tangent bundle of a pseudo-Finsler manifold and prove that it is integrable. Also, we find geometric properties of both leaves of Liouville distribution and the vertical distribution.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science China-mathematics
سال: 2021
ISSN: ['1674-7283', '1869-1862']
DOI: https://doi.org/10.1007/s11425-021-1878-9